
N91-20645

FO]_WARD AND INVERSE KINEMATICS OF

DOUBLE UNIVERSAL JOINT ROBOT WRISTS

Dr. Robert L. Williams II

Automation Technology Branch, M.S. 152D

NASA Langley Research Center

Hampton, VA 23665-5225

ABSTRACT

A robot wrist consisting of two universal joints can eliminate the

wrist singularity problem found on many industrial robots. This pa-

per presents forward and inverse position and velocity kinematics for

such a wrist having three degrees of freedom. Denavit-Hartenberg

parameters are derived to find the transforms required for the kine-

matic equations. The Omni-Wrist, * a commercial double universal

joint robot wrist, is studied in detail. There are four levels of kine-

matic parameters identified for this wrist; three forward and three

inverse maps axe presented for both position and velocity. These

equations relate the hand coordinate frame to the wrist ba_e frame.

They are sufficient for control of the wrist standing aJone.

When the wrist is attached to a manipulator arm, the offsst be-

tween the two universal joints complicates the solution of the overall

kinematics problem. All wrist coordinate frame origins are not co-

incident, which prevents decoupling of position and orientation for

manipulator inverse kinematics. This is a topic for future research.

INTRODUCTION

Many current industrial robot wrists suffer from .singularity limita-

tions where at least two wrist coordinate frames align, reducing orien-

tational freedom. Near singular positions, extremely large joint rates

are required to maintain constant cartesian rates. One proposed wrist

design for reducing singularities uses the universal joint to achieve

roll, pitch, and yaw orientation. An overview of robot wrists, includ-

ing universal joint designs, is given by Rosheim (1989). Other refer-

ences present non-singular robot wrist designs, e.g., (Barker, 1986),

(Milenkovlc, 1987), (Rosheim, 1987 and 1986), and (Trevelyan, 1986).

bicKinney (1988) presents forward kinematic and resolved rate equa-

tions for single and double universal joint robot wrists. The author

studies a specific double universal joint wrist, the Omni-Wrist from

Ross-Hime Designs, Inc. A single universal joint wrist is attractive

because its motion is purely rotational. However, the workspsce is

limited due to gimbal lock singularities. Also, the roll velocity of the

output shaft is variable, given a constant input roll rate. Therefore,

a wrist with two universal joints in series is suggested, which allows

an approximately hemispherical singularity-free workepace (McKin-

hey, 1988). Two universal joints yield a constant roll velocity ratio

(Mabie and Reinholts, 1987).

The current paper presents forward and inverse kinematic position

and velocity equations for control of double universal joint robot

wrists. Denavit-Hartenberg parameters are presented for double uni-
versal joint wrists. The Omni-Wrist kinematic transformations are

presented. Four levels of kinematic parameters are identified, from

the actuator angles to the position and orientation of the hand. Three
mappings are presented for each of the forward position, inverse posi-

* The mention herein of a trademark of a commercial product does not

constitute any recommendation for use by the Government.

tion, forward velocity, and inverse velocity (resolved rate) problems.

These equations relate the robot hand to the robot wrist base and

are sufficient for control of the wrist standing alone.

The double universal joint wrist is not purely rotational due to the

offset between the two universal joints. Position and orientation tra-

jectories thus may not be decoupled for a double universal joint wrist

attached to a manipulator arm. The manipulator inverse position

and velocity problems are more complicated for the double universal

joint robot wrist than a purely rotationed robot wrist.
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[_T]

[_R]

rlj

{-a.}

F1
'F2

F3

I1, I2, I3

FVi, IVi,i = 1,2,3

ci

si

ti
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Cartesian coordinate frame rn

Wrist base coordinate frame

Hand coordinate frame

Actuator angles

Gear bail angles

Universal joint angles

Homogeneous transformation matrix of {m}

relative to {n}

Rotation matrix of {rn} relative to {n}

Element (i,j) of [JR]

Position vector from origin of {n} to {m},

expressed in {n}

Unit direction vector X of {m}

expressed in {n}

Angular velocity of {m} with respect to {3},

expressed in {rn}

Linear velocity of {rn} origin with respect

to{3},expressedin{m}
Forward map solving OiG given OiA, i=4,5,6

Forward map solving 0i given 0_c., i=4,5,6

Forward map solving [s3T] given 0_, i=4,5,6

Inverses of F3, F2, F1, respectively

Forward and Inverse velocity maps,

defined analogously

Joint rate i

cosO_

si nO_

tanOi

Offset length between the universal joints

DOUBLE UNIVERSAL JOINT WRIST KINEMATICS

A universal joint is used to transfer rotations between intersecting

shafts. Most kinematics textbooks discuss universal joints (e.g. Ma-

bie and Reinholtz, 1987). A kinematic diagram for the double uni-

versal joint robot wrist is shown in Fig. 1. The input shaft rotates

about a fixed axis and the output sh_ft is free; thus there are five

degrees of freedom. Coupling of 05 and 06 reduces this number to

three degrees of freedom.
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Figure 1 shows the initial position for all wrist coordinate frames;

all universal joint angles are zero in this configuration. Frame {3} is
the wrist base frame, fixed for thbs paper. Frame {4} rotates by 04

relative to {3}; {5} rotates by 85 relative to {4}; {6} rotates by Oe

relative to {5}; {7} rotates by the coupled OGrelative to {6}; and the

hand frame {8} rotates by the coupled 05 relative to {7}.

1

U

Figure 1

Double (h)iversal Joint Robot Wrist

Kinematic Diagram

Denavlt-Hartenberg Parameters

The Denavit-Hartenberg parameters for the double universal joint

robot wrist of Fig. 1 are given in Table I, which follows the convention

in Craig (1988).

Table I Denavlt-Hartenberg Parameters

i a,-, a,-i d, 0,

4 0 0 O 04 + 900

5 90° 0 0 Os + 900

6 90 ° 0 0 0_

7 0 L 0 0o

8 -90 ° O 0 85 - 900

Forward Position

Tile forward solution finds [3T] given 84, 85, 0e. Equation 1 is the

homogeneous transformation matrix describing the position and ori-

entation of {i) with respect to {i - 1} (Craig, 1988).

[:-'rl =

cO, -sO, 0 a,-i ]

SOiC{_i-- 1 COiCCgi- 1 --8_,-- 1 -dis_i- 1 I
so,so,_,o o0,s_,_,o _'-'o d'Cl'-' J

(1)

Five homogeneous transformation matrices relating {3} through {8}

are obtained by substitutingthe Denavit-Hartenberg parameters into

Eq. 1.

c.ol)[FI= -_, o
0 1

0 0

"c_ -so 0 nO]

0 0

-ss 0

0 0

Ios-c5°i][4TI: o -1
[o _ -_°9 o

[_T}= c6 0
0 1

0 0

The general forward kinematics solution is Eq. 2. The (4x4} forward

transform is comprised of a (3 x 3) rotation matrix representing the

orientation and a (3 × 1) position vector locating the origin of {8) in

{3}. The specific terms are given in Eq. 3.

I

{s3T]= I_R] } {3P8)I
0 O 0 I 1

I-aT] = [a4TCO,)] I_T(Os)] [_T(0s)I [eTT(Oe)t IIT(05)]

(2)

"2sscoK1 - s4

286c_K2+c4

{_T] = 2s5c_c_

0

Kl=c4se + s,ssce

K2=saso - c4s5c6

2cscsKI -2ssKI+c4 L(KI)]

2c6coK2 -2a0K2 + & L(K2)|

2c_c_ - 1 -2css_cs Lc ce ]
o o J (3)

Inverse Position

The inverse problem solves for the universal joint angles given task

space input. The full [s3T] cannot be specified because it has six

freedoms, and the wrist only three. Due to the following constraint,

which dictates that {3Ps } travel on the surface of a sphere of radius L,

{3Psi cannot be the input, because it has two independent freedoms.

P_ + P_ + P_ = L2 (4)

The rotation matrix [_R] isthe input to the inverseproblem.

[ ]rll r12 r13

[_RI= r2, r2a ra3 (51
r31 r32 r33

[_RI= [_R(e,)I I'R(05)l [_R(ee)][°_R(oo)l{._R(e_)l

The angle 04 is isolated by inverting [_R] and multiplying it on the

left of both sides of Eq. 5.

The angles 05 and 0s are eliminated from the right hand side of Eq.

6 by equating the (1,1), (2,3), and (3,2) elements, given in Eqs. 7, 8,

and 9, respectively.
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2 2
r21c4 -- rile4 : --2s5c6 -F 1 (7}

-r13c4 - r23s4 : -2c_ + 1 (8)

r_ : 2c_ - 1 (9)

Equation 7 is subtracted from Eq. 9 to eliminate 05.

r32 -- r2ic 4 -_- rllS 4 = 2C2B -- 2

Equations 8 and I0 are added to remove 0e.

(i0)

Ecos04 +Fsln04 +G=0

E=-(r13+r21) (11)
F--- r11 -- r23

G= re2+1

Using the tan half angle substitution (Mahie and Reinholt_, 1987),

there are two solutions for 04:

• _=_- (12)

The radicand in Eq• 12 issimplifiedwith orthonormal constraints•

The columns of [_R] are the X, Y,Z unit vectorsof {8} expressed in

{3} coordinates, while the rows are those of {3} given in {8}. The

orthogonal constraints dictate that both the columns and rows of

a rotation matrix form a dextral mutually perpendicular set. The

normal constraintsdictatethat the length of allcolumns and rows is

unity• With the followingfour constraints,E 2 + F 2 - G 2 = 0.

3_>e= 3_s x 3_s

IS sl=1.o
113)

lS_s[ = 1.0

Isle31 = 1.0

Therefore,given [aSR], thereisone solutionto 84 (two repeated roots},

from Eq. 12.

With 04 solved,the lefthand side ofEq• 6 isknown. The next step

isto isolateand solve 0s.

[_RCes)-l[ [_R(e4) -1] {_R] [sVR(es}-z] = [_R(e6}I [_RCe6)l (15)

The (2_2} elements of Eq. 15 are equated to solve $s-

0S = tan -t [r13,4 --r23c4l [16)
L r33 J

Both solutions from tile inversetangent function are mathematically

valid,due to symmetry: 0s (_ < 9s < :_) and 0s + _r. When 04.

.and 05 are known the lefthand side of Eq. 15 isknown. Angle 86 is

solved by equating the (3,2)elements of Eq. 15.

206 = Cos-t (r13c4 + r_3s4) (17)

The inverse cosine function solution is =l=200. This ambiguity is re-

solved by determining which sign satisfies the (1,2) terms of Eq. 15.

s20a = (r_3c4--rl3s4)ss -- r33c5 (18}

The proper sign for 20o ischosen from Eq. 18. Another validsolution

for 206 is200 + 21r;therefore,a second mathematical solutionfor 00

is0o + _r.

A generalisation is drawn regarding the two solutions for 0s. The

right hand side of Eq. 18 for 05 + 7r is the negative of that value for

0s. Therefore, the value of 0e corresponding to 0s -k _ is the negative

of 06 corresponding to 05.

There are four solutions to the inverse problem: a unique 04, two

8s for this 04, plus two 06 for each 05. Only one combination need

be solved; the remaining three are formed from the structure of the

solution, summarised in Table II. In rows 1 and 2 of Table II, 0e can

be positive or negative; the negative 0s in rows 3 and 4 indicates

opposite sign to 0G of row 1.

Table II Inverse Position Solutions

Solution 04 Os Os

1 04 05 0o

2 04 Os 06+r

3 04 Os+_ -Os

4 04 05+x -Os+_

Forward Velocity

The forward velocity problem solves for cartesian rates given joint

rates using velocity recursion equations (Craig, 1988).

• i-fl
{'+%,+,} = [_+lRl{'w,} +0,+1{ 2,+1} (19)

{'+%,+1} = [_+IR] ({%} + {%',} x {'P,+,}) (20}

The wrist Jacobian matrix is extracted from the forward velocity

solution. The (6 x 3) Jacobian matrix maps the (3 x 1) joint rates

into the (6 × 1) caxtesian rates. The Jacobian matrix is partitioned

into (3 × 3) rotational and translational Jacobian matrices, [JR] and

Pr].

[ s2O5c_

t -c5s206

= _ }{0} { #0

SsS20e 2cs ]
css20e --285

2c_ 0

{%s}=[Jrl{#}

35 SS

[Jr] L 0 SsCs CsS 6

s5c6 0 c6

(21)

(22)

Inverse Velocity (Resolved Rate)

The resolved rate problem solves for joint rates given cartesian rates.

This problem is overconstrained (six equations in three unknowns}.
Therefore, only titres cartesian rates may be specified. The resolved

rate input cannot be {svs} because [Jr] is always singular. This is

due to the constraint, Eq. 4.

IJrl = LssseC_(1 -c_ - 8_) = 0 (23)
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The inverse velocity problem is solved by inverting Eq. 21.

{0} = [J_] {sws}

[ ,_ 1 -'.]
c5 (24)

1
t_5-_ -_5 _tstr,J

The wrist singularity conditions are found by setting the determinant
to zero.

-- 2IJRI -- 4c5% = 0 (25)

The double universal joint robot wrist is singular when 05 = -4-_ or

or,= ±_.

OMNI-WRIST KINEMATICS

The Omni-Wrist by Ross-Hime Designs, Inc. is a double universal

joint robot wrist. Figure 2 displays a section view of the Omni-Wrist.

Planetary gears transfer the first universal joint rotations 05 and 06

to the second universal joint.

The rotational axes for 85 and 0r, are moving. The Omni-Wrist has

outer and inner bevel gear bails to transfer rotations from two actu-

ators fixed in the wrist base to the angles 05 and 0r,, to avoid moving

actuators. No intermediate gear bail is required for 04 because it
rotates about an axis fixed in the wrist base. In addition to the outer

and inner gear bails, helical gear trains are used to reduce the speed

and amplify the torque for each of the three actuators.

Referring to Fig. 2, actuator 1 drives 84. The inner gear bail rotates

in the plane of the paper; the outer rotates about a perpendicular

axis. The inner gear bail angle, rotated by actuator 2, equals 06

when 04 = 0_ = 0. Actuator 3 rotates the outer gear bail, whose

angle equals 85 when 04 = 86 = 0. In general, the inner and outer

gear bails combine to yield 85 and 00.

m g6
Gear Coupling for 0r, 4[

Tool Shaft

Inner Gear Drive

Outer Gear Drive

The roll angle 84 is continuous and bidirectional. The inner and outer

gear bail angles are limited to +45 °. These limits apply to 05 when

04 = 0r, = 0, and to 06 when 04 = 05 = 0. When these angles are not

zero, the limits on 85 and 86 are more restrictive.

There are four levels of Omni-Wrist kinematic parameters: 1) Ac-

tuator angles (04A, 05A, 0r,.4); 2) Gear bail angles (04¢_, 05G, 0r,G); 3)

Universaljoint angles (0., 05,0r,);and 4) Hand coordinate frame [_T].

All angles are sero in the initial position.

Omni-Wrist Position Kinematics

Figure 3 describes the three forward and inverse position mappings
between the four levels of Omni-Wrist kinematic parameters. The

overall forward position problem finds [s3T] given the actuator angles,

using maps F1, F2, and F3. The inverse position problem finds the

actuator angles given [_R] via the maps I1, I2, and 13.

F3 F3

i_nl ]

1---
11

I _L_

04'05'06 1

I2
F2

[ 04a' 05G' 0r,_" I

13
F1

Figure 3

Position Mappings

Maps F3 and I1 are the general wrist solutions, Eq. 3 and Eqs. 14,

16, and 17, respectively. The remaining maps are developed in this
section.

Position Maps F1 and 13

The gear bail angles are related to the actuator angles by gear trains.

Forward map F1 is given in Eq. 26.

I

Fi:_ure 2

Omni-Wrlut Section View

04(; = N104A (26a)

Or,e: = N205A (26b)

06¢: = N30r,A (26c)

For the Omni-Wrist, N, : _,-t N_ = _'t and N.I = _'-I The

map I3 is the inverse of Eqs. 26.

Position Maps F2 and [2

The kinematic relationships between the gear bail angles and the

universal joint angles are coupled and transcendental. McKinney

(1988) solved a problem equivalent to 12; the map F2 was not solved.
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Two coordinate frames are introduced to determine the kinematic

relationships between the gear bail and universal joint angles. The

{IGD} frame is attached to the inner gear bail, and {OGD} is at-
tached to the outer gear bail, as shown in Fig. 4. Both origins are

colocated with the origin of {3}. In the initial position, {3}, {IGD},

and {OGD} are coincident. The inner gear bail rotates by angle OOG
about the fixed axis _21GD; the outer gear bail rotates about the fixed

'Xoc.D by 8sG.

2_

J_G(initial)

_ _Inner Gear Drive

eoG

OG_. 73,f'_cD

_OaD(initial)

Figure 4

Definition of {IGD} and {OGD}

From Fig. 1, the offset vector from the first to the second universal

joint is a length L along J_6 (denoted {3ps} ). The moving axes J_IGD

and _OGD are perpendicular to {aiDs} for any wrist motion.

x ?ocv

The terms for Eq. 27 follow, expressed in {3}.

(27)

I C6G I
3RIND= [_cDR]1eDdieD = o (27a)

--SAG

/°}a?o_-D= {_cDRI°_'D?oGo = csG (27b)
( SaG

3j_e = [_R] 6J_s = K2 (27c)

C5C6

Substituting these terms yields three scalar equations relating the

gear bailsand universaljointangles.

C5GSbG

= c4sG + s4sscG = K1 (28a)

--85GC6G

8436 -- C4S5C6 = K2 (28b)M
CsGCbG

= _5c6 (2Sc)

M = V/cos28sG + sin285GCOS:OOG (28d)

Equations 28a- 28c are used to find the mappings F2 and I2.

The angle 84 does not have a gear bail; the F2 mapping is identity.

84=84G (29)

Using Eq. 29 in Eqs. 28a, b, and c, the following equations result.

A = cscsoG s6 + t4GSSC6 (30a)
MC4G

B = --S5GCbC
MCaG : taGSC -- s5c6 (30b}

C C5GCfG
M c5c6 (30c)

The sin85 term is eliminated from Eqs. 30a and b to solve for 8c.

[ A + Bt,G ]
as = sin-'(u) u = t 1-_--42 j (31)

The inverse sine function yields 8s and r- 86; the latter is out of the

motion range of the Omni-Wrist. With 8e known, the solution for 85

comes from Eq. 30c.

8_= cos-_(_) _ =

The inversecosine function solution is q-Ss. Since both resultsare

potentially in the motion range of the Omni-Wrist, thisambiguity

must be resolved by choosing the 85 sign which satisfiesEq. 30b.

Map F2 isunique.

The mapping 12 solves for the gear ball angles given the universal

joint angles. The 84c. mapping isEq. 29. The remaining gear ball

angles are found by dividing Eqs. 28b and 28a by F_l.28c.

r ]
es_.= tan-'(_) _ =/-s's_--+ __,so_o/ (33a)

L csce J

8¢c = tan-llq) q _-- [ c4s0 C5C6+$4s5c6] J (336)

Both results from the inverse tangent function are mathematically

correct, due to symmetry. However, considering angular limits of the

Omni-Wriet, only quadrant I or IV results are admissible. Therefore,

the inverse map 12 is unique.

Omni-Wrist Velocity Kinematics

Figure 5 shows the three forward and inverse maps relating the four

levels of Omni-Wrist velocity parameters. The forward velocity prob-

lem finds the cartesian rates given the actuator joint rates, using

maps FV1, FV2, and FV3. The inverse velocity problem accepts

{sws} and calculates the actuator joint rates via maps /V1,/V2,
and/V3.

The velocity maps FV3 and /V1 are Eqs. 21 and 22, and Eq. 24,

respectively. The remaining Omni-Wrist velocity solutions are pre-
sented below.

Velocity Maps FV1 and /V3

The map FV1 is a time derivative of Eqs. 26; /V3 is the inverse of

Eqs. 34.

_4G:NI_4A (34a)

0sG =N20SA (346)

OeG=Ns_eA (34c)

27



(808} {8_S}

FV3 FV 3 IY l

FV 2 IV2

FVI IV3

Figure 5

Velocity Mappings

Velocity Maps FV2 and /V2

The map FV2 is a time derivative of F2, F,qs. 29, 31, and 32. The

angular rate 00 is required for the 05 calculation.

0, = 0,_ (3s)

0o = 1 dn
dt

du = (Bc204,- - As284(:)04(; + c_(,ft + c4,;s4_;B
dt

• • cs_,s_, #],,i = q [q_:cs¢:so_.O,(: - ssessGO_ + c_eco,;eeG - ---#- J
• S5GC6G .

1

Mc4[;

M- =ss,_so,_ • •
VII - s_,.s_(,[cscs6G05_+85(:co(;0oc:.]

(36)

05 --1 dv
dt

dv 1 [CtGOe + C'] (37)

• CSGCOG .

--1 [$5(,_co(705( , ÷ CS(_,S6GOOG-}- _M]

The inverse map IV2 is a time derivative of 12, Eqs. 33a and 33b.

The mapping for 04_: is Eq. 35.

1 dw

v5(: 1 + w 2 dt

dw -1, • 1 • 1 •

E = --tc,t,_,:5 + s,_)o, + _(c, + _,sst_)o5- _ (s,)oo
(38)

0o_; 1 dq
1 + q2 dt

dq 1 • 1 • 1__ •

c 5

(39)

The derivatives Eqs. 36, 38, and 39 hold for the angle range :_ to

" The sign of 0s in Eq. 37 is positive when -r < 0_ < 0.

EXAMPLES

This section presents two examples to demonstrate the equations de-

rived in this paper. The first example deals with the forward and

inverse position and velocity problems for the general double uni-
versal joint robot wrist mechanism. The second presents forward

and inverse position and velocity results for the Omni-Wrist. The

dimensions used in this section are ram, degrees, _, and r__.

Example 1
Forward Position

Given 04 = 120.0°,05 = -25.0°,00 = 10.0 °, and L = 41, [saT] is

calculated using Eq. 3.

[_T1=
"-0.494 -0.798 -0.348 -18.3 l

_o..2_O.lO3o.g.--0.743 0.593 -0.310

0 0 0

(40)

Inverse Position

Given [_R] from Eq. 40 three universal joint angles are calculated

with Eqs. 14, 16, and 17; the four solutions are formed from Table

IL

Table III Inverse Position Solutions

Solution 04 05 06

1 120.0 -25.0 10.0

2 120.0 -25.0 190.0

3 120.0 155.0 -10.0

4 120.0 155.0 170.0

Forward Velocity

Given 04 = 1.0,05 = 2.0,0_ = 3.0, and L = 41, {sws} and (Svs} are

calculated using Eqs. 21 and 22.

4.4 }
{sws} = 3.7

3.6
-80.0 }

{Svs} = -I0.0

100.0

(41}

Inverse Velocity (Resolved Rate)

Given (sws} from gq. 41, 04 = 1.0, 05 = 2.0, 00 = 3.0, are calculated

using Eq. 24.

Example 2
Forward Position

Given the actuator angles, the gear bail angles, universal joint angles,

and [s3T] are calculated successively, using maps F1, F2, and F3.

Example 1 presents the F3 result.
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F1 F2
{0A} {0_.} {0}

(42)

Inverse Position

Given [_R] from Eq. 40, the universal joint, gear bail, and actua-

tor angles are calculated using llj 12, and 13. Example 1 presents

11. Considering angular limits, only the first solution in Table III is

reachable. The inverse maps I2 and I3 are the reverse of maps F2

and F1 in Eq. 42, respectively.

Forward Velocity

Given the actuator rates, the gear bail, universal joint, and carte-

sian rates are calculated with the mappings FV1, FV2, and FV3.

Example 1 gives FV3.

{_:o::} (43)

Inverse Velocity (Resolved Rate)

Given {sws} from Eel. 41, the universal joint, gear bail, and actuator

rates are found, using IV1, IV2, and/V3. Example 1 presents /V1.

The mappings/V2 and/V3 are the reverse of FV2 and FV1 in Eq.

43, respectively.

CONCLUSION

This paper presents kinematic equations for control Of a double uni-

versal joint robot wrist. The forward and inverse position and veloc-

ity problems were solved. The Omni-Wrist equations were developed

in detail. This wrist has four levels of kinematic parameters. Three

forward and inverse position and velocity maps relating these param-

eters were presented. These equations relate the hand coordinate

frame to the wrist base coordinate frame, and are sufficient for con-

trolling the wrist standing alone. All pertinent kinematic equations

were derived; any specific control algorithm will not require all of tile

equations. All Omni-Wrist solutions are unique. The Omni-Wrist is

completely singularity-free throughout its range of motion.

The equations of this paper have been verified by computer simula-

tion. As demonstrated by the examples, the inverse solutions validate

the forward solutions. Experimental work using the Omni-Wrist is

planned to further validate the equations.

The offset, L, between the two universal joints complicates the inverse

kinematics problems when tile double universal joint robot wrist is

attached to a manipulator arm. The wrist coordinate frames axe not

all colocated, which prevents decoupling of the hand coordinate frame

position and orientation. For a three degree of freedom manipulator

arm carrying the double universal robot wrist, the inverse position

problem involves six transcendental equations, coupled in the six un-

knowns. The associated Jacobian matrix is fully populated, which

means the hand linear velocity depends on the wrist rates in addition

to the first three joint rates. The kinematics of a manipulator using

the double universal joint robot wrist is a subject for future research.
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